Ігри з природою

курсовая работа

1.2.3 Допустимі стратегії в статистичних іграх

Припустимо, що розглядаємо змішану стратегію статистика (а). Можуть зустрітися два випадки.

1. Не можна знайти жодній стратегії, кращої ніж (а). Це означає, що не існує такої стратегії (а), для якої:

(1.2.3.1)

при всіх , хоча для деяких співвідношення (1.2.3.1) буде справедливе. В цьому випадку стратегію (а) можна назвати допустимою, але вона може і не бути бажаною, оскільки можуть бути і інші стратегії, які також мають право на увагу.

2. Існує стратегія (а), краща ніж (а). Це означає, що співвідношення (1.2.3.1) для стратегії (а) буде справедливе при всіх . В цьому випадку стратегію (а) потрібно виключити з розгляду на користь стратегії (а), тобто вважати її неприпустимою. Допустимі стратегії зручно розглядати в термінах S-гри. Оскільки в S-грі стратегія статистика визначається точкою S опуклої оболонки S*, а втрати при різних визначаються координатами цієї точки, то стратегія, що визначається точкою S, буде допустимою, якщо не існує іншої точки , у якої всі координати будуть менше відповідних координат точки S. Метод знаходження допустимих стратегій розберемо для випадку, коли простір станів природи складається з елементів і . На мал. 1.2.3.1 показана опукла область S*, що відповідає цьому випадку.

Розглянемо стратегію, що визначається точкою , яка розташовується всередині області S*. Ця стратегія не є допустимою, оскільки всі точки, що лежать на відрізку OS1 усередині S*, визначають кращі стратегії, ніж . Якнайкращою з них є стратегія S, що належить нижній лівій межі області S*. [5]

Тому всі внутрішні точки можна виключити на користь точок, що належать нижній лівій межі області S*, відзначеної на малюнку жирною лінією. Проте зсув точки уздовж цієї межі не дає яких-небудь переваг, оскільки при цьому зменшуються втрати, що відповідають одному стану природи, але збільшуються втрати, що відповідають іншому стану природи. Тому точки, що належать нижній лівій межі області S* і визначають допустимі стратегії статистика.

S

Мал.1.2.2.1 Допустимі стратегії в S-грі

1.3 Принципи розвязання статистичних задач

Розглянемо гру з природою: у нас (сторона А) є т можливих стратегій ; що стосується обстановки, то про неї можна зробити п припущень: . Розглянемо їх як «стратегії природи». Наш виграш при кожній парі стратегій заданий матрицею (таблиця 1.3.1).[2, c. 196-199]

Таблиця 1.3.1

Необхідно вибрати таку стратегію гравця А (чисту, або можливо, змішану, якщо це можливо), яка є більш вигідною в порівнянні з іншими.

Найпростіший випадок вибору розвязку в грі з природою -- це випадок коли якась із стратегій гравця А перевершує інші («домінує» над ними), як, наприклад, стратегія А2 в таблиці 1.3.2.

Тут виграш при стратегії А2 при будь-якому стані природи не менше ніж при інших стратегіях, а при деяких -- більше; значить потрібний вибирати саме цю стратегію.

Таблиця 1.3.2

Якщо навіть в матриці гри з природою немає однієї домінуючій над всіма іншими стратегії, все ж таки корисно подивитися, чи немає в ній дублюючих стратегій і поступливих іншим за всіх умов. Але тут є одна тонкість: так ми можна зменшити тільки число стратегій гравця А, але не гравця П. Припустимо, що «чищення» матриці проведено, і ні дублюючих, ні явно невигідних гравцю А стратегій в ній немає. Припустимо, що виграш при нашій стратегії Ai і стані природа більше, ніж при нашій стратегії Ak і стані природи : >. Але за рахунок чого більше? За рахунок того, що вдало вибрали стратегію Ai? Необовязково. Можливо, просто стан природи вигідніше, ніж . Наприклад, стан природи «нормальні умови» для будь-якої операції вигідніше, ніж «повінь», «землетрус» і т.п. Бажано ввести такі показники, які не просто давали б виграш при даній стратегії в кожній ситуації, але відображали б «вдачність» або «невдачність» вибору даної стратегії в даній ситуації. З цією метою в теорії рішень вводиться поняття «ризику». Ризиком гравця А при користуванні стратегією Ai в умовах називається різниця між виграшем, який ми отримали б, якби знали умови , і виграшем, який ми отримаємо, не знаючи їх і вибираючи стратегію Ai :

Для прикладу візьмемо матрицю виграшів ()(таблиця 1.3.3) і побудуємо для неї матрицю ризиків () (таблиця 1.3.4). При погляді на матрицю ризиків (таблиця 1.3.4) стають яснішими деякі риси даної «гри з природою». Так, в матриці виграшів () (таблиця 1.3.3) в другому рядку перший і останній елементи були рівні один одному: .

Таблиця 1.3.3

4

8

6

9

Таблиця 1.3.4

Проте ці виграші зовсім не рівноцінні в значенні вдалого вибору стратегії: при стані природи могли виграти найбільше 4, і вибір стратегії А2 майже абсолютно добрий; а ось при стані могли б, вибравши стратегію А1 отримати на цілі 6 одиниць більше, тобто вибір стратегії А2 дуже поганий. Ризик -- це «платня за відсутність інформації»: в таблиці 1.3.4 r21 = 1, r24= 6. Природно, хотілося б мінімізувати ризик, супроводжуючий вибір розвязку.

Найпростіший випадок невизначеності -- це «доброякісна або стохастична невизначеність», коли стани природи мають якісь вірогідності і цю вірогідності нам відомі. Тоді вибираємо ту стратегію, для якої середнє значення виграшу, узяте по рядку, максимально:

А середній ризик повинен бути мінімальним:

Припустимо, що вірогідність у принципі існує, але невідомі. Іноді в цьому випадку припускають всі стани природи рівноімовірними (так званий «принцип недостатньої підстави» Лапласа), але взагалі-то це робити не рекомендується. Все-таки звичайно більш менш ясно, які стани більш, а які -- менш вірогідні. Для того, щоб знайти орієнтовні значення вірогідностей , можна, наприклад, скористатися методом експертних оцінок.

Візьмемо випадок «поганої невизначеності», коли вірогідність станів природи або взагалі не існують, або не піддаються оцінці навіть приблизно. Тут все залежить від точки зору на ситуацію, від позиції дослідника, від того, якими бідами загрожує невдалий вибір рішення. Опишемо декілька можливих підходів, точок зору (або, як то кажуть, декілька «критеріїв» для вибору рішення).

1. Максимінний критерій Вальда. [2, c. 196] Згідно цьому критерію гра з природою ведеться як гра з розумним, причому агресивним супротивником, що робить все для того, щоб перешкодити нам досягти успіху. Оптимальною вважається стратегія, при якій гарантується виграш у будь-якому випадку не менший, ніж «нижня ціна гри з природою»:

.

Якщо керуватися цим критерієм, що втілює «позицію крайнього песимізму», треба завжди орієнтуватися на гірші умови, знаючи напевно, що «гірше цього не буде». Очевидно, такий підхід -- «перестраховочный», природний для того, хто дуже боїться програти, -- не є єдино можливим, але як крайній випадок він заслуговує розгляду.

2. Критерій мінімаксного ризику Севіджа.

Поняття ризику виявляється корисним і для введення інших принципів поведінки в іграх з природою. На ньому, зокрема, заснований критерій Севіджа, відповідно до якого в умовах невизначеності (вірогідність станів природи невідома) слід вибирати таку стратегію i0, яка гарантує мінімальний ризик, тобто

Цей критерій -- теж украй песимістичний, але при виборі оптимальної стратегії радить орієнтуватися не на виграш, а на ризик. Сутність такого підходу в тому, щоб всіляко уникати великого ризику при ухваленні рішення. В значенні «песимізму» критерій Севіджа схожий з критерієм Вальда, але самий «песимізм» тут розуміється по-іншому.

Покажемо на прикладі, що критерій Севіджа, взагалі кажучи, відрізняється від критерію Вальда. Розглянемо матрицю:

Для неї оптимальною по Вальду є перша стратегія:

.

Відповідна матриці А матриця ризику є:

Оптимальною по Севіджу тут є друга стратегія: , тобто критерії Вальда і Севіджа в даному прикладі приводять до різних результатів (хоча можна навести і приклади, в яких виходять однакові результати).

3. Критерій песимізму-оптимізму Гурвіца. Цей критерій рекомендує при виборі рішення не керуватися ні крайнім песимізмом, ні крайнім, легковажним оптимізмом. Згідно цьому критерію вибирається стратегія з умови

де -- «коефіцієнт песимізму», вибраний між нулем і одиницею.

При = 1 критерій Гурвіца перетворюється на критерій Вальда; при = 0 -- в критерій «крайнього оптимізму», що рекомендує вибрати ту стратегію, при якій найбільший виграш в рядку максимальний. При 0 < < 1 виходить щось середнє між тим і іншим. Коефіцієнт вибирається з субєктивних міркувань -- чим небезпечно ситуація, чим більше ми хочемо в ній «підстрахуватися», чим менша наша схильність до ризику, тим ближче до одиниці вибирається .

При бажанні можна побудувати критерій, аналогічний Н, виходячи не з виграшу, а з ризику, але ми на цьому не зупинятимемося.

На перший погляд здається, що вибір критерію -- субєктивний, вибір коефіцієнта -- теж субєктивний, значить і рішення теж приймається субєктивно, тобто, грубо кажучи, довільно.

В якійсь мірі це дійсно так -- вибір рішення в умовах невизначеності завжди умовний, субєктивний. Та все ж в якійсь (обмеженої) мірі математичні методи корисні і тут. Перш за все, вони дозволяють привести гру з природою до матричної форми, що далеко не завжди буває просто, особливо коли стратегій багато (в наведених прикладах їх було дуже мало). Крім того, вони дозволяють замінити просту матрицю виграшів (або ризиків), послідовним чисельним аналізом ситуації з різних точок зору, вислухати рекомендації кожній з них і, нарешті, зупинитися на чомусь визначеному. Це аналогічно обговоренню питання з різних позицій, а в суперечці, як відомо, народжується істина. Отже не слід чекати від теорії рішень остаточних, незаперечних рекомендацій -- єдине, чим вона може допомогти -- це порадою.

Якщо рекомендації, витікаючі з різних критеріїв, співпадають -- тим краще, значить, можна сміливо вибрати рішення, що рекомендується: воно швидше за все не «підведе». Якщо ж, як це часто буває, рекомендації суперечать один одному, то треба зясувати, наскільки до різних результатам вони приводять, уточнити свою точку зору і провести остаточний вибір. Не треба забувати що в будь-яких задачах в обгрунтовуванні розвязків деяке свавілля неминуче -- хоча б при побудові математичної моделі, виборі показника ефективності. Вся математика, вживана в дослідженні операцій, не відміняє цього свавілля, а дозволяє тільки «поставити його на своє місце».

Розглянемо елементарний приклад «гри з природою» 4 3, матриця виграшів якої () дана в таблиці 1.3.5.

Таблиця 1.3.5

Виберемо оптимальну стратегію користуючись критеріями Вальда, Севіджа і Гурвіца, причому в останньому візьмемо = 0,6 (перевага трохи у бік песимізму).

1. Застосуємо критерій Вальда. Підрахуємо мінімуми по рядках (див. таблицю 1.3.6) і виберемо ту стратегію, при якій мінімум рядка максимальний (рівний 25). Це -- стратегія A3.

Таблиця 1.3.6

2. Застосуємо критерій Севіджа. Перейдемо від матриці виграшів (таблиця 1.3.6) до матриці ризиків (таблиця 1.3.7), в правому додатковому стовпці запишемо максимальне в рядку значення ризику .

З чисел правого стовпця мінімальне (60) відповідає стратегіям А2 і Аз; значить, обидва вони оптимальні по Севіджу.

Таблиця 1.3.7

3. Застосуємо критерій Гурвіца (при = 0,6). Знову перепишемо таблицю 1.3.5, але цього разу в правих трьох додаткових стовпцях поставимо: мінімум рядка , його максимум , і величину , округлену до цілих одиниць (див. таблицю 1.3.8). Максимальне значення hi = 47 відповідає стратегії А3.

Отже, в даному випадку всі три критерії однозначно говорять на користь стратегії А3, яку є всі підстави вибрати.

Таблиця 1.3.8

Розглянемо випадок, коли між критеріями виникає «суперечка». Матриця виграшів () (з наперед виписаними стовпцями мінімумів рядків , максимумами рядків , і значеннями (при = 0,6)) дана в таблиці 1.3.9.

По критерію Вальда оптимальною є стратегія , по критерію Гурвіца з = 0,6 -- стратегія .

Таблиця 1.3.9

По критерію Севіджа матриця ризиків з додатковим стовпцем, що містить максимуми рядків , дана в таблиці 1.3.10. Мінімальним в останньому стовпці є число 38, так що критерій Севіджа, так само як і критерій Гурвіца, показує стратегію .

Таблиця 1.3.10

Відзначимо наступне: всі три критерії (Вальда, Севіджа і Гурвіца) були сформульовано для чистих стратегій, але кожний з них може бути поширений і на змішані, подібно тому, як це робиться в теорії ігор. Проте змішані стратегії в грі з природою мають лише обмежене (головним чином, теоретичне) значення. Якщо в грі проти свідомого супротивника змішані стратегії іноді мають сенс як «трюк», що вводить в оману супротивника, то в грі проти «байдужої природи» цей резон відпадає. Крім того, змішані стратегії придбавають значення тільки при багатократному повторенні гри. А якщо вже її повторюємо, то неминуче починають вимальовуватися якісь риси вірогідності ситуації, і ми ними можемо скористатися для того, щоб застосувати «стохастичний підхід» до задачі, а він змішаних стратегій не дає.

Крім того, в ситуаціях з «поганою невизначеністю», коли болісно не вистачає інформації, головна задача -- цю інформацію отримати, а не вигадувати хитромудрі методи, що дозволяють без неї обійтися. Одна з основних задач теорії статистичних рішень -- це якраз планування експерименту, мета якого -- зясування або уточнення якихось даних.

Делись добром ;)