Дифференциальные игры
Материал из Википедии — свободной энциклопедии
Перейти к: навигация,поиск
Дифференциальные игры — раздел математической теории управления, в котором изучается управление объектом в конфликтных ситуациях (см.теория игр). В дифференциальных играх возможности игроков описываютсядифференциальными уравнениямиили дифференциальными включениями, содержащими управляющие векторы, которыми распоряжаются игроки. Для выбора своего управления каждый игрок может использовать лишь текущую информацию о поведении игроков. Различают дифференциальные игры двух игроков и многих игроков.
Наиболее исследованными являются дифференциальные игры преследования, в которых количество игроков равно 2, одного называют догоняющим, другого убегающим. Цель догоняющего — приведениевекторана заданноемножествоза возможно короткое время; цель убегающего — по возможности оттянуть момент приходавекторана. Основополагающие результаты в дифференциальных играх получены в 60-е гг. 20 в. вСССРЛ. С. Понтрягиным,Н. Н. Красовским,Е. Ф. Мищенко, Б. Н. Пшеничным и др., вСША—Р. Айзексом, Л. Берковицем, У. Флемингом и др.
Первым, кто исследовал дифференциальные игры, стал Руфус Айзекс(работа1951 года, впервые опубликована в1965 году). А одна из первых проанализированных им игр стала игра «Шофёр-убийца» (homicidal chauffeur game). Надо отметить, что сам Айзекс вместо «шофёра» и «пешехода» подразумевалторпедуи увёртывающийся от неё небольшойкатер.[1]
Ссылки
Дифференциальные игрывБольшой советской энциклопедии
- Теория игр
- История
- Представление игр
- Экстенсивная форма
- Нормальная форма
- Характеристическая функция
- Применение теории игр
- Описание и моделирование
- Нормативный анализ (выявление наилучшего поведения)
- Типы игр Кооперативные и некооперативные
- Симметричные и несимметричные
- С нулевой суммой и с ненулевой суммой
- Параллельные и последовательные
- С полной или неполной информацией
- Игры с бесконечным числом шагов
- Дискретные и непрерывные игры
- Метаигры
- См. Также
- Примечания
- Литература
- Стохастическая игра
- История
- Применение
- Некооперативная игра
- Некооперативная игра в нормальной форме
- Некооперативная игра в развернутой форме
- Принципы оптимальности
- Кооперативная игра (математика)
- Математическое представление
- Свойства характеристической функции
- Примеры игр
- Решение кооперативных игр
- Литература
- Свойства
- См. Также
- Источники
- Формальное определение
- История возникновения
- Дальнейшие свойства
- Вектор Шепли
- Формальное определение
- Аксиоматика вектора Шепли
- Литература
- Антагонистическая игра
- Дифференциальные игры
- Литература
- Литература
- Сетевые игры
- Литература
- Кооперативные стохастические игры
- Литература
- Марковский процесс принятия решений
- Определение
- Дилемма заключённого
- Классическая дилемма заключённого
- Обобщённая форма
- Похожая, но другая игра
- Примеры из реальной жизни
- Повторяющаяся дилемма заключённого
- Психология обучения и теория игр
- Восточная философия
- Генетика
- Игрок (теория игр)
- Литература
- Типы стратегий
- Литература
- Терминология
- Формальные определения
- Доминирование и равновесия Нэша
- Последовательное исключение доминируемых стратегий
- Литература