Характеристическая функция
В кооперативных играх с трансферабельной полезностью, то есть возможностью передачи средств от одного игрока к другому, невозможно применять понятиеиндивидуальных платежей. Вместо этого используют так называемую характеристическую функцию, определяющую выигрыш каждойкоалицииигроков. При этом предполагается, что выигрыш пустой коалиции равен нулю.
Основания такого подхода можно найти ещё в книге фон Неймана и Моргенштерна. Изучая нормальную форму для коалиционных игр, они рассудили, что если в игре с двумя сторонами образуется коалиция C, то против неё выступает коалицияN\C. Образуется как бы игра для двух игроков. Но так как вариантов возможных коалиций много (а именно 2N, гдеN— количество игроков), то выигрыш дляCбудет некоторойхарактеристической величиной, зависящей от состава коалиции. Формально игра в такой форме (также называемая TU-игрой[7]) представляется парой(N, v), гдеN— множество всех игроков, аv : 2N → R— это характеристическая функция.
Подобная форма представления может быть применена для всех игр, в том числе без трансферабельной полезности. В настоящее время существуют способы перевести любую игру из нормальной формы в характеристическую, но преобразование в обратную сторону возможно не во всех случаях.
- Теория игр
- История
- Представление игр
- Экстенсивная форма
- Нормальная форма
- Характеристическая функция
- Применение теории игр
- Описание и моделирование
- Нормативный анализ (выявление наилучшего поведения)
- Типы игр Кооперативные и некооперативные
- Симметричные и несимметричные
- С нулевой суммой и с ненулевой суммой
- Параллельные и последовательные
- С полной или неполной информацией
- Игры с бесконечным числом шагов
- Дискретные и непрерывные игры
- Метаигры
- См. Также
- Примечания
- Литература
- Стохастическая игра
- История
- Применение
- Некооперативная игра
- Некооперативная игра в нормальной форме
- Некооперативная игра в развернутой форме
- Принципы оптимальности
- Кооперативная игра (математика)
- Математическое представление
- Свойства характеристической функции
- Примеры игр
- Решение кооперативных игр
- Литература
- Свойства
- См. Также
- Источники
- Формальное определение
- История возникновения
- Дальнейшие свойства
- Вектор Шепли
- Формальное определение
- Аксиоматика вектора Шепли
- Литература
- Антагонистическая игра
- Дифференциальные игры
- Литература
- Литература
- Сетевые игры
- Литература
- Кооперативные стохастические игры
- Литература
- Марковский процесс принятия решений
- Определение
- Дилемма заключённого
- Классическая дилемма заключённого
- Обобщённая форма
- Похожая, но другая игра
- Примеры из реальной жизни
- Повторяющаяся дилемма заключённого
- Психология обучения и теория игр
- Восточная философия
- Генетика
- Игрок (теория игр)
- Литература
- Типы стратегий
- Литература
- Терминология
- Формальные определения
- Доминирование и равновесия Нэша
- Последовательное исключение доминируемых стратегий
- Литература