6.7 Цифровое моделирование (метод перебора)
Методы линейного и динамического программирования дают возможность заменить простой перебор возможных вариантов решений упорядоченным и экономным поиском оптимального результата. Однако существует много технико-экономических задач, важных в практическом отношении, для решения которых нужны иные методы. К таким задачам относятся различные вероятностные задачи, где оптимальное решение (поведение, стратегию) надо выбирать в условиях неопределенности исходных данных, когда поведение системы случайно и может быть описано лишь в терминах математической статистики (среднее значение, математическое ожидание, дисперсия, спектр, функция корреляции, законы распределения и т.п.). В этих случаях обычно нельзя указать рациональные аналитические методы решения, и поэтому такие задачи решаются методом перебора.
Одним из простейших и, пожалуй, наиболее распространенных методов оптимизации является метод перебора (сканирования). Сущность этого метода состоит в следующем.
Пусть в процессе моделирования производственной ситуации, по которой необходимо принять решение, получена символьная модель вида:
W = f(ci,vj) (6.27)
где W - общий критерий функционирования;
сi - множество управляемых переменных;
vj - множество неуправляемых переменных;
f - соотношение, связывающее управляемые и неуправляемые переменные.
Чтобы получить желаемое решение, нужно определить значения управляемых переменных, максимизирующие или минимизирующие критерии функционирования системы W.
Обычно для получения решения задачи поступают таким образом. Сначала устанавливают диапазон возможных изменений управляемых переменных Сi. Затем для дальнейших исследований используются управляемые переменные Сi, которые удовлетворяют системе определённых ограничений. Для этих значений вычисляются значения целевой функции W. В качестве решения задачи принимаются значения Сi, при которых целевая функция принимает экстремальные значения.
Достоинством метода является не только простота его реализации на ЭВМ, но и принципиальная применимость к решению многих практических задач, возможность получения глобального экстремума. Основной недостаток - большие затраты времени, особенно в связи с возрастанием размерности задачи.
- Содержание
- Предисловие
- Введение
- 1 Исторический обзор применения моделирования
- 2 Основы системного анализа и моделирования
- 2.1 Этапы системного анализа
- 2.2 Существующие подходы анализа системы
- 2.3 Понятие о моделировании. Классификация моделей
- 2.4 Основные этапы и принципы моделирования
- 3 Элементы математической статистики
- 3.1 Понятие о математической статистике
- 3.2 Задачи математической статистики
- 3.2.1 Первый этап – сбор и первичная обработка данных
- 3.2.2 Второй этап – определение точечных оценок распределения
- 3.2.3 Третий этап – определение интервальных оценок, понятие о статистической гипотезе
- 3.2.4 Четвертый этап – аппроксимация выборочного распределения теоретическим законом
- 3.3 Области применения статистических методов обработки данных
- 3.3.1 Статистический контроль прочности бетона
- 3.3.2 Метод множественной корреляции
- 4 Статистическое планирование эксперимента
- 4.1 Понятие о планировании эксперимента. Основные задачи эксперимента
- 4.2 Понятие о полиноме, отклике, факторах и уровнях варьирования, факторном пространстве
- 4.3 Первичная статистическая обработка результатов эксперимента
- 4.4 Математическая модель эксперимента. Метод наименьших квадратов
- 4.5 Получение некоторых эмпирических формул
- 4.6 Метод наименьших квадратов для функции нескольких переменных
- 4.7 Дисперсионная матрица оценок
- 4.8 Критерии оптимального планирования
- 4.9 Планы для построения линейных и неполных квадратичных моделей
- 4.10 Планы для построения полиномиальных моделей второго порядка
- 4.11 Регрессионный анализ модели
- 4.12 Анализ математической модели
- 4.13 Решение оптимизационных задач
- 4.14 Моделирование свойств смесей
- 4.15 Принципы имитационного моделирования
- 4.16 Решение рецептурно-технологических задач на эвм в режиме диалога
- 5 Основные виды задач, решаемых при организации, планировании и управлении строительством
- 5.1 Математические модели некоторых задач в строительстве
- 5.2 Примеры решения некоторых задач
- 5.2.1 Решение транспортной задачи
- 5.2.2 Решение задачи о ресурсах
- 5.2.3 Решение задачи нахождения оптимальной массы фермы
- 5.3 Организационные задачи
- 6 Моделирование в строительстве
- 6.1 Модели линейного программирования
- 6.2 Нелинейные модели
- 6.3 Модели динамического программирования
- 6.4 Оптимизационные модели (постановка задач оптимизации)
- 6.5 Модели управления запасами
- 6.6 Целочисленные модели
- 6.7 Цифровое моделирование (метод перебора)
- 6.8 Вероятностно-статистические модели
- 6.9 Модели теории игр
- 6.10 Модели итеративного агрегирования
- 6.11 Организационно-технологические модели
- 6.12 Графические модели
- 6.13 Сетевые модели
- 7 Организационное моделирование систем управления строительством
- 7.1 Основные направления моделирования систем управления строительством
- 7.2 Аспекты организационно-управленческих систем (моделей)
- 7.3 Деление организационно-управленческих моделей на группы
- 7.4 Виды моделей первой группы
- 7.5 Виды моделей второй группы
- Список использованных источников