6.5 Модели управления запасами
Модели управления запасами используются при необходимости определения в строительстве объема запаса строительных материалов, конструкций и изделий, характера изменения его в процессе возведения объекта, обновления запаса в связи с поступлением и расходованием ресурсов, с целью обеспечения бесперебойности и надежности строительного процесса при минимальных затратах, связанных с хранением, пополнением, расходованием запаса.
Так как уровень спроса неожиданно возникающих потребностей в ресурсах носит чаще всего случайный характер, то модели управления запасами должны быть стохастическими, вероятностными, в упрощенной постановке возможно использование детерминированных моделей.
В строительстве чаще всего применяются модели управления складскими запасами.
В общем виде экономико-математическая модель управления может быть представлена:
З(t) = Знач +Р(t) - R(t) (6.21)
где З(t) - текущий уровень запаса материалов на складе в момент времени t;
Знач - начальный запас материалов на складе за время t;
P(t) - поступление материалов на склад за время t;
R(t) - расходование материалов со склада за время t.
Очевидно, что в любой момент запас материалов на складе не может быть отрицательным, то есть:
3(t) > 0 (6.22)
Поступление и расходование материалов со склада обычно производится партиями. Обозначив объем поставки через Рi, а объём расходуемой партии Rj, преобразуем исходное соотношение к виду:
(6.23)
где n - количество поставляемых партий стройматериалов;
m - количество расходуемых партий стройматериалов.
Это равенство является базисным в модели управления запасами. В зависимости от того, какие величины (показатели) в нём заданы, а какие являются искомыми, различают разные виды моделей. Часто в модели включают показатели, характеризующие затраты на поставку, хранение, отправку товаров со склада.
Критерием оптимальности моделей управления запасами, как правило, является объем затрат, их минимум (минимум исследуемой функции). В процессе определения экономического содержания затрат учитываются затраты, связанные с заказом каждой новой партии материальных ресурсов; транспортные расходы; расходы на содержание складов и хранение материалов; затраты на складские операции, штрафы и т. д.
Ограничения в задачах управления запасами могут быть самого различного характера. Как правило, они используются для описания предельной величины тех или иных параметров системы (модели). Например, ограничения могут устанавливаться по максимальному объёму запасов; максимальной площади, занимаемой складируемыми материалами и конструкциями; максимальной стоимости; средней стоимости, числу поставок в заданном интервале времени, максимальному объему и т. д.
Многообразие реальных практических ситуаций предопределяет рассмотрение большого числа вариантов задач управления запасами.
Методом теории запасов можно решать очень широкий круг задач оптимального планирования таких ресурсов, как финансы, парк строительных машин и транспортных средств, трудовые ресурсы и т. д.
- Содержание
- Предисловие
- Введение
- 1 Исторический обзор применения моделирования
- 2 Основы системного анализа и моделирования
- 2.1 Этапы системного анализа
- 2.2 Существующие подходы анализа системы
- 2.3 Понятие о моделировании. Классификация моделей
- 2.4 Основные этапы и принципы моделирования
- 3 Элементы математической статистики
- 3.1 Понятие о математической статистике
- 3.2 Задачи математической статистики
- 3.2.1 Первый этап – сбор и первичная обработка данных
- 3.2.2 Второй этап – определение точечных оценок распределения
- 3.2.3 Третий этап – определение интервальных оценок, понятие о статистической гипотезе
- 3.2.4 Четвертый этап – аппроксимация выборочного распределения теоретическим законом
- 3.3 Области применения статистических методов обработки данных
- 3.3.1 Статистический контроль прочности бетона
- 3.3.2 Метод множественной корреляции
- 4 Статистическое планирование эксперимента
- 4.1 Понятие о планировании эксперимента. Основные задачи эксперимента
- 4.2 Понятие о полиноме, отклике, факторах и уровнях варьирования, факторном пространстве
- 4.3 Первичная статистическая обработка результатов эксперимента
- 4.4 Математическая модель эксперимента. Метод наименьших квадратов
- 4.5 Получение некоторых эмпирических формул
- 4.6 Метод наименьших квадратов для функции нескольких переменных
- 4.7 Дисперсионная матрица оценок
- 4.8 Критерии оптимального планирования
- 4.9 Планы для построения линейных и неполных квадратичных моделей
- 4.10 Планы для построения полиномиальных моделей второго порядка
- 4.11 Регрессионный анализ модели
- 4.12 Анализ математической модели
- 4.13 Решение оптимизационных задач
- 4.14 Моделирование свойств смесей
- 4.15 Принципы имитационного моделирования
- 4.16 Решение рецептурно-технологических задач на эвм в режиме диалога
- 5 Основные виды задач, решаемых при организации, планировании и управлении строительством
- 5.1 Математические модели некоторых задач в строительстве
- 5.2 Примеры решения некоторых задач
- 5.2.1 Решение транспортной задачи
- 5.2.2 Решение задачи о ресурсах
- 5.2.3 Решение задачи нахождения оптимальной массы фермы
- 5.3 Организационные задачи
- 6 Моделирование в строительстве
- 6.1 Модели линейного программирования
- 6.2 Нелинейные модели
- 6.3 Модели динамического программирования
- 6.4 Оптимизационные модели (постановка задач оптимизации)
- 6.5 Модели управления запасами
- 6.6 Целочисленные модели
- 6.7 Цифровое моделирование (метод перебора)
- 6.8 Вероятностно-статистические модели
- 6.9 Модели теории игр
- 6.10 Модели итеративного агрегирования
- 6.11 Организационно-технологические модели
- 6.12 Графические модели
- 6.13 Сетевые модели
- 7 Организационное моделирование систем управления строительством
- 7.1 Основные направления моделирования систем управления строительством
- 7.2 Аспекты организационно-управленческих систем (моделей)
- 7.3 Деление организационно-управленческих моделей на группы
- 7.4 Виды моделей первой группы
- 7.5 Виды моделей второй группы
- Список использованных источников