С полной или неполной информацией
Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр — с неполной информацией. Например, вся «соль» Дилеммы заключённогоилиСравнения монетокзаключается в их неполноте.
В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка». Сюда же относятся шахматы, шашки, го,манкалаи другие.
Часто понятие полной информации путают с похожим — совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.
- Теория игр
- . Содержание
- История исследований по теории игр
- Представление игр
- Экстенсивная форма
- Нормальная форма
- Характеристическая функция в игре
- Применение теории игр
- Описание и моделирование
- Нормативный анализ (выявление наилучшего поведения)
- Типы игр Кооперативные и некооперативные
- Симметричные и несимметричные
- С нулевой суммой и с ненулевой суммой
- Параллельные и последовательные
- С полной или неполной информацией
- Игры с бесконечным числом шагов
- Дискретные и непрерывные игры
- Метаигры
- Стохастическая игра
- История исследований стохастических игр
- Применение стохастических игр
- Некооперативная игра
- Некооперативная игра в нормальной форме
- Некооперативная игра в развернутой форме
- Принципы оптимальности Эффективность по Парето
- Равновесие Нэша: формальное определение
- Равновесии дрожащей руки: формальное определение
- Собственное равновесие
- Определение
- Сильное равновесие
- Равновесие в доминирующих стратегиях
- Равновесие, совершенное по под-играм
- Кооперативная игра
- Математическое представление кооперативной игры
- Свойства характеристической функции
- Примеры кооперативных игр
- Решение кооперативных игр
- Свойства
- Формальное определение
- История возникновения
- Дальнейшие свойства
- Вектор Шепли
- Формальное определение
- Аксиоматика вектора Шепли
- Литература
- Антагонистическая игра
- Дифференциальные игры
- Сетевые игры
- Кооперативные стохастические игры
- Марковский процесс принятия решений
- Определение
- Классическая дилемма заключённого
- Обобщённая форма
- Примеры из реальной жизни
- Повторяющаяся дилемма заключённого
- Психология обучения и теория игр
- Восточная философия
- Генетика
- Игрок в теории игр
- Типы стратегий
- Терминология
- Формальные определения
- Доминирование и равновесие Нэша
- Последовательное исключение доминируемых стратегий
- Литература