Сильное равновесие
Сильное равновесие— принцип оптимальности втеории игр,очищениеравновесия Нэша. Кроме устойчивости ситуации вигрек индивидуальным отклонениямучастников, требует также устойчивости к групповым отклонениям.
Формальное определение
Пусть задана игра в нормальной форме . Ситуацияназываетсясильным равновесиемв игре Γ, если для любой коалиции игрокови любого набора стратегийнайдется участник коалицииSтакой, что
.
Сильное равновесие всегда Парето-эффективно, но существует намного реже, нежели равновесие Нэша, в связи с чем не получило широкого распространения.
Эпсилон-равновесие
ε-равновесиевтеории игр— профиль стратегий игроковнекооперативной игры, приблизительно удовлетворяющий условиямравновесия Нэша.
|
Определение
Для заданной некооперативной игры и неотрицательного действительного параметра ε, профиль стратегий называется ε-равновесием, если ни один игрок не может, изменяя свою стратегию, достичь увеличения своего ожидаемого выигрыша более чем на ε. Любое равновесие Нэшапредставляет собой ε-равновесие для ε = 0.
Формально, пусть — играNлиц со множествами стратегий игрокови вектором функций выигрышаu. Набор стратегийявляется-равновесием в игреG, если:
для всех
Пример
Понятие ε-равновесия используется в теории стохастических игрс неограниченным числом повторений. Следующие примеры демонстрируют игры, не имеющие равновесия Нэша, но обладающие ε-равновесием для любого положительного ε.
Простейшим примером является следующий вариант игры «Орлянка», предложенный Г. Эвереттом. Игрок 1 выбирает сторону монеты, игрок 2 должен ее угадать. Если игрок 2 угадывает правильно, он выигрывает эту монету и игра завершается. В противном случае, если был загадан «орел», игра заканчивается с нулевыми выигрышами, если была загадана «решка», игра повторяется. При бесконечном повторении игры оба участника получают нулевые выигрыши.
Для любого ε > 0 и профиля стратегий, при котором игрок 2 называет «орел» с вероятностью ε и «решку» с вероятностью 1-ε (на любом шаге игры, независимо от предыстории), является ε-равновесием в этой игре. Ожидаемый выигрыш игрока 2 при этом не менее 1-ε. Однако, нетрудно видеть, что ни одна стратегия игрока 2 не может гарантировать ожидаемый выигрыш, равный 1. Следовательно, данная игра не имеет равновесия Нэша.
- Теория игр
- . Содержание
- История исследований по теории игр
- Представление игр
- Экстенсивная форма
- Нормальная форма
- Характеристическая функция в игре
- Применение теории игр
- Описание и моделирование
- Нормативный анализ (выявление наилучшего поведения)
- Типы игр Кооперативные и некооперативные
- Симметричные и несимметричные
- С нулевой суммой и с ненулевой суммой
- Параллельные и последовательные
- С полной или неполной информацией
- Игры с бесконечным числом шагов
- Дискретные и непрерывные игры
- Метаигры
- Стохастическая игра
- История исследований стохастических игр
- Применение стохастических игр
- Некооперативная игра
- Некооперативная игра в нормальной форме
- Некооперативная игра в развернутой форме
- Принципы оптимальности Эффективность по Парето
- Равновесие Нэша: формальное определение
- Равновесии дрожащей руки: формальное определение
- Собственное равновесие
- Определение
- Сильное равновесие
- Равновесие в доминирующих стратегиях
- Равновесие, совершенное по под-играм
- Кооперативная игра
- Математическое представление кооперативной игры
- Свойства характеристической функции
- Примеры кооперативных игр
- Решение кооперативных игр
- Свойства
- Формальное определение
- История возникновения
- Дальнейшие свойства
- Вектор Шепли
- Формальное определение
- Аксиоматика вектора Шепли
- Литература
- Антагонистическая игра
- Дифференциальные игры
- Сетевые игры
- Кооперативные стохастические игры
- Марковский процесс принятия решений
- Определение
- Классическая дилемма заключённого
- Обобщённая форма
- Примеры из реальной жизни
- Повторяющаяся дилемма заключённого
- Психология обучения и теория игр
- Восточная философия
- Генетика
- Игрок в теории игр
- Типы стратегий
- Терминология
- Формальные определения
- Доминирование и равновесие Нэша
- Последовательное исключение доминируемых стратегий
- Литература