Равновесие в доминирующих стратегиях
Материал из Википедии — свободной энциклопедии
Перейти к: навигация,поиск
Равновесие в доминирующих стратегиях— принцип оптимальности, используемый втеории игрпри решениинекооперативных игр, содержащихдоминирующие стратегии.
| А | В |
А | 1, 1 | 0, 0 |
В | 0, 0 | 0, 0 |
Слабое доминирование |
Равновесие в доминирующих стратегиях является равновесием Нэша. Более того, если стратегии являются строго доминирующими, то такое равновесие в игре единственно. Если доминирование нестрогое, то помимо равновесия в доминирующих стратегиях, в игре могут существовать и другие равновесия Нэша. Примером является игра, приведенная справа.
В ней стратегии Аобоих игроков слабо доминируют их стратегииB. Ситуация (А,А) является равновесием в доминирующих стратегиях. Однако, ситуация (В,В) также является равновесием Нэша в этой игре.
- Теория игр
- . Содержание
- История исследований по теории игр
- Представление игр
- Экстенсивная форма
- Нормальная форма
- Характеристическая функция в игре
- Применение теории игр
- Описание и моделирование
- Нормативный анализ (выявление наилучшего поведения)
- Типы игр Кооперативные и некооперативные
- Симметричные и несимметричные
- С нулевой суммой и с ненулевой суммой
- Параллельные и последовательные
- С полной или неполной информацией
- Игры с бесконечным числом шагов
- Дискретные и непрерывные игры
- Метаигры
- Стохастическая игра
- История исследований стохастических игр
- Применение стохастических игр
- Некооперативная игра
- Некооперативная игра в нормальной форме
- Некооперативная игра в развернутой форме
- Принципы оптимальности Эффективность по Парето
- Равновесие Нэша: формальное определение
- Равновесии дрожащей руки: формальное определение
- Собственное равновесие
- Определение
- Сильное равновесие
- Равновесие в доминирующих стратегиях
- Равновесие, совершенное по под-играм
- Кооперативная игра
- Математическое представление кооперативной игры
- Свойства характеристической функции
- Примеры кооперативных игр
- Решение кооперативных игр
- Свойства
- Формальное определение
- История возникновения
- Дальнейшие свойства
- Вектор Шепли
- Формальное определение
- Аксиоматика вектора Шепли
- Литература
- Антагонистическая игра
- Дифференциальные игры
- Сетевые игры
- Кооперативные стохастические игры
- Марковский процесс принятия решений
- Определение
- Классическая дилемма заключённого
- Обобщённая форма
- Примеры из реальной жизни
- Повторяющаяся дилемма заключённого
- Психология обучения и теория игр
- Восточная философия
- Генетика
- Игрок в теории игр
- Типы стратегий
- Терминология
- Формальные определения
- Доминирование и равновесие Нэша
- Последовательное исключение доминируемых стратегий
- Литература