13.4. Обработка экспертных оценок
Обработка экспертных оценок при групповой экспертизе имеет специфику в зависимости от характера информации, выражающей предпочтения экспертов и содержательное обоснование своих предпочтений, целей, назначения и других факторов проводимой экспертизы и заключается в следующем:
определении обобщенной оценки исследуемых объектов или рассматриваемого объекта по ряду свойств, показателей и относительной их значимости;
оценки согласованности и зависимости мнений экспертов;
оценки достоверности полученных расчетных величин.
Целью обработки экспертных оценок является получение обобщенных данных по исследуемым объектам, анализ которых позволяет получать дополнительную информацию об особенностях процесса оценки, позволяющую формулировать выводы о качестве проведенной экспертизы и причинах возможных расхождений мнений коалиций экспертов.
Определение обобщенной оценки исследуемых объектов осуществляется при групповой экспертной оценке на основе применения методов осреднения индивидуальных оценок экспертов с учетом предположения о том, что они являются достаточно точными «измерителями» и их оценки образуют одну или несколько компактных групп. Алгоритмы получения обобщенной оценки зависят от применяемых разновидностей методов субъективного измерения экспертами предпочтительности оцениваемых объектов или их свойств. Если результаты применяемых методов субъективных измерений представляют собой числа или баллы, то построение групповой оценки заключается в определении среднего значения (математического ожидания) или медианы (наиболее вероятной оценки). В другом случае, если результаты представляют собой ранги, то задачей обработки является построение обобщенной ранжировки объектов на основании наилучшего способа согласования индивидуальных ранжировок экспертов в виде медианы, сумма расстояний от которой результатов индивидуальных ранжировок является минимальной.
Упорядочив полученные результаты обобщенных оценок объектов по убыванию их значимости можно судить об их относительной важности. Дополнительными показателями, уточняющими относительную важность исследуемых объектов, являются: частота высших (максимально возможных) оценок для объекта , сумма рангов объекта. Частота максимально возможных оценок дляj-го объекта определяется по формуле:
где – количество максимально возможных оценок, полученных j-тым объектом;
–количество экспертов, оценивающих j-ый объект исследования.
Указанный показатель целесообразно использовать для установления очередности объектов в случае получения равных значений результатов обобщенных оценок.
Сумма рангов объекта исследования определяется по формуле:
где – ранг оценкиj-м экспертом j-го объекта.
Если среди оценок данных j-m экспертом, есть одинаковые, то им назначается одинаковый ранг, равный среднему арифметическому соответствующих чисел натурального ряда. При оценке относительной важности объектов понаиболее важным следует считать объект, характеризующийся его наименьшим значением.
Количественная оценка согласованности мнений экспертов необходима в том случае, если мнения экспертов расходятся по рассматриваемым объектам для более обоснованной интерпретации их расхождения. При этом, индивидуальные оценки рассматриваемого объекта, высказанные экспертами, представляются в виде точек в некотором пространстве, в котором имеется понятие расстояния. Используя понятие компактности можно трактовать степень согласованности мнений экспертов, то если указанные оценки расположены на небольшом расстоянии друг от друга, образуя компактную группу, то можно говорить о хорошей согласованности мнений экспертов, иначе – о невысокой. Если оценки экспертов образуют в пространстве две или более компактные группы, то это означает, что в экспертной группе существуют соответствующие коалиции с существенно отличающимися точками зрения на оценку объектов. Многообразие предлагаемых в литературе способов оценки согласованности мнений экспертов обуславливается использованием для оценки объектов различных субъективных методов измерения, результатами которых могут быть числа, баллы или ранги, а также различные меры степени согласованности (например, мерой согласованности оценок экспертов может быть отношение среднеквадратического отклонения к математическому ожиданию случайной величины; сумма расстояний оценок от среднего значения, отнесенная к расстоянию математического ожидания от начала координат; количество точек, расположенных в радиусе среднеквадратического отклонения от математического ожидания ко всему количеству точек и т. д.). Некоторые методы определения согласованности количественных оценок на основе понятия компактности рассмотрены в разделе 11.4.
В качестве показателей степени согласованности мнений экспертов применяют: коэффициент вариации, коэффициент парной ранговой корреляции (Спирменаили Кендалла), коэффициент конкордации (дисперсионный или энтропийный).
Коэффициент вариации (Vj) оценок, данных j-му объекту определяется по формуле:
где – оценка в баллахi-м экспертом j-гo объекта;
– среднестатистическое значение величины оценки объекта в баллах, определяемое по формуле:
где mj – количество экспертов, оценивающих j-ый объект.
Чем меньше значение этого коэффициента, тем выше степень согласованности мнений экспертов.
Коэффициент парной ранговой корреляции Спирмена для двух экспертовα и β определяется по
формуле:
где – ранговые оценкиj-гo объекта экспертов α и β;
п – количество оцениваемых объектов;
– показатели связанных (равных) рангов оценок экспертов α и β, вычисляемые следующим образом:
если все n рангов оценок, назначенных i-м экспертом различны, то Тi = 0, иначе для равных рангов:
где L – количество групп связанных рангов;
t1 – количество связанных рангов в 1-й. группе.
Значение коэффициента указывает на полную согласованность мнений экспертов α и β; значение – о полной противоположности мнений экспертов; значение– об отсутствии связи между мнениями экспертов.
Для оценки степени согласованности мнений всей группы экспертов в целом применяется коэффициент конкордации. Коэффициент конкордации определяется в следующей последовательности: вначале вычисляется среднее арифметическое сумм рангов оценок всех объектов:
затем вычисляются отклонения dj суммы рангов оценок, полученных j-м объектом от :
после этого подсчитываются показатели Ti связных (равных) рангов ранговых оценок, назначенных i-м экспертом; в конечном итоге рассчитывается коэффициент конкордации:
где m1 – количество экспертов, оценивших хотя бы один объект.
Коэффициент конкордации изменяется в пределах от 0 до 1. Увеличение значения коэффициента конкордации соответствует увеличению степени согласованности мнений экспертов. Небольшое значение коэффициента конкордации может быть обусловлено либо действительно невысокой степенью согласованности мнений экспертов, либо существованием групп с высокой согласованностью противоположных мнений.
Оценки объектов, получаемые в результате обработки экспертных оценок представляют собой случайные величины. Поэтому необходимо оценивать надежность (достоверность, уровень значимости) результатов экспертизы. Для определения уровня значимости используется так называемый критерий согласия «хи-квадрат» . Последовательность определения уровня значимости по данному критерию состоит в следующем:
рассчитывается значение по формуле:
где т – количество экспертов,
затем вычисляется количество степеней свободы (r = n – 1, где n – количество исследуемых объектов).
По таблице значений для определенного числа степеней свободы и найденного значенияопределяется вероятностьР случайного появления рассчитанного значения показателя согласованности мнений. Затем фиксируется некоторое пороговое значение вероятности – Po (обычно Рo = 0,05 или 0,01), называемое уровнем значимости. Если Р оказывается меньше Рo, тогда гипотеза о случайном происхождении конкретного значения показателя согласованности мнений отвергается, то есть этот показатель считается значимым, а группа экспертов репрезентативной. В другом случае, если гипотеза о случайном происхождении конкретного значения показателя согласованности мнений принимается, тогда этот показатель считается незначимым, а группа экспертов непрезентативной.
Рассмотрим пример применения экспертных оценок для определения влияния интегрированных автоматизированных информационных систем управления (ИАИСУ) на статьи затрат себестоимости выпускаемой продукции производственным предприятием.
В качестве экспертов, как показывает практика, должны участвовать специалисты, которые проектируют ИАИСУ, а также группа специалистов, которые эксплуатируют эту систему. Перед началом экспертизы все ее участники получают исходную информацию о внедряемых локальных АИСУ и перечень статей затрат себестоимости, на которые они могут влиять в виде таблицы, где по горизонтали располагается перечень статей затрат себестоимости, а по вертикали – внедряемые локальные АИСУ. От специалистов-разработчиков должно быть не менее четырех экспертов. В качестве экспертов могут выступать начальник отдела i-ой локальной АИСУ, ведущий специалист по разработке i-ой локальной АИСУ (задаче, комплексу АИСУ организационного управления), экономист отдела АИСУ и т. п. В свою очередь от специалистов, занимающиихся эксплуатацией системы, должно быть не менее шести экспертов.
Качество экспертных оценок, их надежность и обоснованность в значительной степени зависит от выбранной методики сбора и обработки экспертных мнений. Индивидуальный метод, который мы применяем для выявления влияния i-x локальных АИСУ на статьи затрат себестоимости продукции, включает проведение анкетного опроса, отбор и обработку полученных заключений. В этом случае информационным массивом служат заполненные специалистами таблицы (анкеты) экспертных оценок. Применительно к решению нашего вопроса мы используем метод экспертных оценок, изложенный выше и в работе [4]. При составлении таблиц экспертных оценок должны быть выполнены три условия:
получены количественно определенные ответы на предлагаемые вопросы;
получены формализованные сведения о характере источников аргументации, а также о степени влияния каждого из источников на ответ эксперта;
получены от экспертов количественно определенные оценки степени их знакомства с областью, к которой относятся предлагаемые вопросы.
В целях удовлетворения первого условия вопросы должны быть сведены к оценке относительной важности влияния 1-х локальных АИСУ на статьи затрат себестоимости продукции. Каждому эксперту предлагается дать оценку (по стобалльной системе) относительной важности влияния указанных АИСУ на статьи затрат себестоимости продукции. Анкета в виде таблицы (табл. 10, стр. 298), выдается каждому эксперту, где по вертикали содержатся сведения о перечне проектируемых задач (комплексов), локальных АИСУ, а по горизонтали перечень статей затрат себестоимости продукции , на часть из которых они могут повлиять.
Таблица 9
- «Мати» – Российский государственный технологический университет им. К.Э. Циолковского
- В.В. Мыльника
- Предисловие
- Часть I. Основы построения и финансирования систем управления Глава 1. Системы и их Закономерности
- 1.1. Системы
- 1.2. Классификация систем и их характеристика
- 1.3. Основные закономерности сметем
- Литература
- Глава 2. Управление и кибернетика
- 2.1. Управление
- 2.2. Кибернетика и ее принципы
- 2.3. Производственная организация как кибернетическая система
- Литература
- Глава 3. Автоматизация управления
- 3.1. Основные направления автоматизации управления
- 3.2. Классификация аису
- 3.3. Структурное построение иаису
- 3.4. Общесистемные принципы создания иаису
- 3.5. Методы синтеза структуры иаису
- 3.6. Цели и критерии эффективности систем управления
- Глава 4. Методология разработки систем управления
- 4.1. Организация разработки систем управления
- Взаимосвязь отдельных фаз инвестиционного проекта с сетевым графиком создания системы управления
- 4.2. Инвестиционный цикл проекта и его структура
- Литература
- Глава 5. Источники и методы финансирования систем управления
- 5.1. Источники финансирования
- 5.2. Основные методы финансирования
- Литература
- Глава 6. Методологические основы принятия решений
- 6.1. Сущность принятия решений
- 6.2. Классификация управленческих решений
- 6.3. Постановка задачи принятия управленческих решений
- 6.4. Модель процесса принятия и реализации управленческих решений
- 6.5. Человеческий фактор в принятии и реализации уоравленческих решений
- Литература
- Часть II. Методы исследования и оценки эффективности систем управления Глава 7. Системный анализ
- 7.1. Предмет системного анализа
- 7.2. Процедуры системного анализа
- 7.3. Разработка, построение и исследование моделей
- Литература
- Глава 8. Исследование операций
- 8.1. Вводные понятия
- 8.2. Методы безусловной и условной оптимизации
- 8.3. Корреляционный и регрессионный анализ
- 8.4. Робастные методы и процедуры
- 8.5. Выводы по анализу применяемых методов
- Литература
- Глава 9. Имитационное моделирование
- 9.1. Понятие об имитационном моделировании
- 9.2. Имитация функционирования систем с дискретными событиями
- 9.3. Методы имитации случайных факторов
- Глава 10. Планирование экспериментов
- 10.1. Полный факторный эксперимент и дробные реплики
- Полный факторный эксперимент для двух независимых переменных, варьируемых на двух уровнях (планирование типа 22)
- Полный факторный эксперимент для двух независимых переменных, варьируемых на двух уровнях (планирование типа 23)
- Первая полуреплика от полного факторного эксперимента типа 23 (планирование типа 23-1)
- Вторая полуреплика от полного факторного эксперимента типа 23 (планирование типа 23-1)
- 10.2. Поиск области оптимума
- Глава 11. Распознавание объектов, явлений и ситуации
- 11.1. Сущность процесса распознавания
- 11.2. Системы распознавания и их классификация
- 11.3. Задачи при создании системы распознавания
- 11.4. Математические методы распознавания
- Глава 12. «Черный» и «белый» ящики как научные методы
- 12.1. Понятие «черного» и квелого» ящика
- 12.2. Исследование поведения «черного» ящика
- Глава 13. Экспертные оценки
- 13.1. Сущность метода экспертных оценок
- 13.2. Подбор экспертов
- 13.3. Методы проведения опроса экспертов
- 13.4. Обработка экспертных оценок
- Анализ оценки относительной важности влияния I-X локальных аису на статьи затрат себестоимости продукции
- Мнение экспертов источников аргументации
- Литература
- Глава 14. Оценка эффективности систем управления
- 14.1. Эффективность инвестиций в системы управления
- 14.2. Методы оценки эффективности систем управления
- 14.3. Статические методы
- 14.4. Дисконтирование потоков денежных ресурсов
- 14.6. Динамические методы
- 14.6. Определение затрат на создание и эксплуатацию систем управления
- 14.7. Факторы и источники формирования социально-экономических результатов
- 14.8. Оценка социально-экономических результатов
- 14.9. Учет инфляционных процессов
- 14.10. Учет неопределенности и рисков
- Литература
- Глоссарий
- Содержание